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Use of Option Pricing Methods

Hard to handle options with NPV methods. Need option pricing
methods.

We will illustrate this with a simple case:
The Option to Invest.

Example: You are deciding whether to build a plant that would
produce widgets. The plant can be built quickly, and will cost $1
million. A careful analysis shows that the present value of the
cash flows from the plant, if it were up and running today, is
$1.2 million. Should you build the plant?

Answer: Not clear.
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You Have an Option to Invest

Issue is whether you should exercise this option.

If you exercise the option, it will cost you I = $1 million. You
will receive an asset whose value today is V = $1.2 million. Of
course V might go up or down in the future, as market
conditions change.

Compare to call option on a stock, where P is price of stock and
EX is exercise price:
Option Payoff

Call option on stock: Max (P-EX, 0)

Option to invest in Max (V-I, 0)
factory

Robert Pindyck (MIT) LECTURES ON REAL OPTIONS—PART II August, 2008 3 / 50



Nature of Option to Invest

Unlike call option on a stock, option to invest may be long-lived,
even perpetual.

Why does the firm have this option?

Patents, and technological know-how.

A license or copyright.

Land or mineral rights.

Firm’s market position, reputation.

Scale economies.

Managerial know-how.

In general, a firm’s options to invest can account for a large part
of the firm’s market value.
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Project Value and Investment Decision

To solve this problem, must model the value of the project and
its evolution over time.

Given the dynamics of the project’s value, we can value the
option to invest in the project.

Valuing the option to invest requires that we find the
optimal investment rule, i.e., the rule for when to invest.

”When” does not mean determining the point in time that
investment should occur.
It means finding the critical value of the project that should
trigger investment.
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Dynamics of Project Value, V

Value of project, V , will evolve over time.

µ = Expected return on V . This expected return will be
consistent with the project’s (nondiversifiable) risk.

δ = Payout rate on project. This is the rate of cash payout, as
fraction of V .

So µ = δ + expected rate of capital gain.

First, suppose there is No Risk.

Then rate of capital gain is:

∆V

V
= (µ− δ)∆t

and µ = rf , the risk-free interest rate.
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Dynamics of Project Value, V (Continued)

Now, suppose V is risky. Then:

∆V

V
= (µ− δ)∆t + σet

where et is random, zero-mean. So V follows a random walk, like the
price of a stock.

If all risk is diversifiable, µ = rf .

If there is nondiversifiable risk, µ > rf .

Formally, write process for V as:

dV

V
= (µ− δ)dt + σdz

where dz = et

√
dt is the increment of a Wiener process, and et

normally distributed, with (dz)2 = dt.

So V follows a geometric Brownian motion (GBM).

Note (dV )2 = σ2V 2dt.
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Mathematical Background

Wiener Process: If z(t) is a Wiener process, any change in z ,
∆z , over time interval ∆t, satisfies

1. The relationship between ∆z and ∆t is given by:

∆z = εt

√
∆t,

where εt is a normally distributed random variable with zero
mean and a standard deviation of 1.

2. The random variable εt is serially uncorrelated, i.e., E [εtεs ] = 0
for t 6= s. Thus values of ∆z for any two different time intervals
are independent.
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Mathematical Background (continued)

What do these conditions imply for change in z over an interval
of time T?

Break interval up into n units of length ∆t each, with
n = T /∆t. Then the change in z over this interval is

z(s + T )− z(s) =
n

∑
i=1

εi

√
∆t (1)

The εi ’s are independent of each other. By the Central Limit
Theorem, the change z(s + T )− z(s) is normally distributed
with mean 0 and variance n ∆t = T .

This result, which follows from the fact that ∆z depends on√
∆t and not on ∆t, is particularly important; the variance of

the change in a Wiener process grows linearly with the time
horizon.
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Mathematical Background (continued)

By letting ∆t become infinitesimally small, we can represent the
increment of a Wiener process, dz , as:

dz = εt

√
dt (2)

Since εt has zero mean and unit standard deviation, E(dz) = 0,
and V [dz ] = E [(dz)2] = dt.
Note that a Wiener process has no time derivative in a
conventional sense; ∆z/∆t = εt (∆t)−1/2, which becomes
infinite as ∆t approaches zero.

Generalization: Brownian Motion with Drift.

dx = α dt + σ dz , (3)

where dz is the increment of a Wiener process, α is the drift
parameter, and σ the variance parameter.
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Mathematical Background (continued)

Over any time interval ∆t, ∆x is normally distributed, and has
expected value E(∆x) = α ∆t and variance V(∆x) = σ2∆t.

Figure 1 shows three sample paths of eq. (3), with α = 0.2 per
year, and σ = 1.0 per year. Each sample path was generated by
taking a ∆t of one month, and then calculating a trajectory for
x(t) using

xt = xt−1 + .01667 + .2887 εt , (4)

with x1950 = 0. In eq. (4), at each time t, εt is drawn from a
normal distribution with zero mean and unit standard deviation.
(Note: α and σ are in monthly terms. Trend of .2 per year
implies 0.0167 per month; S.D. of 1.0 per year implies variance
of 1.0 per year, hence variance of 1

12 = .0833 per month, so

monthly S.D. is
√

0.0833 = 0.2887.) Also shown is a trend line,
i.e., eq. (4) with εt = 0.
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Sample Path of Brownian Motion with Drift
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Mathematical Background (continued)

Fig. 2 shows a forecast of this process. A sample path was
generated from 1950 to the end of 1974, again using eq. (4),
and then forecasts of x(t) were constructed for 1975 to 2000.
The forecast of x for T months beyond Dec. 1974 is

x̂1974+T = x1974 + .01667 T .

The graph also shows a 66 percent forecast confidence interval,
i.e., the forecasted x(t) plus or minus one standard deviation.
Recall that variance grows linearly with the time horizon, so the
standard deviation grows as the square root of the time horizon.
Hence the 66 percent confidence interval is

x1974 + .01667T ± .2887
√

T .

One can similarly construct 90 or 95 percent confidence intervals.
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Forecast of Brownian Motion with Drift
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Mathematical Background (continued)

Generalized Brownian Motion: Ito Process.

dx = a(x , t)dt + b(x , t)dz

Mean of dx : E(dz) = 0 so E(dx) = α(x , t)dt.

Variance of dx : V(dx) = E [dx2]− (E [dx ]2), which hass terms
in dt, (dt)2, and (dt)(dz), which is of order (dt)3/2. For dt
infinitesimally small, terms in (dt)2 and (dt)3/2 can be ignored,
so

V [dx ] = b2(x , t) dt.

Geometric Brownian Motion (GBM).

a(x , t) = αx , and b(x , t) = σx , so

dx = α x dt + σ x dz . (5)

Percentage changes in x , ∆x/x , are normally distributed, so
absolute changes in x , ∆x , are lognormally distributed.
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Mathematical Background (continued)

If x(0) = x0, the expected value of x(t) is

E [x(t)] = x0 eαt ,

and the variance of x(t) is

V [x(t)] = x2
0 e2αt (eσ2 t − 1).

We can calculate the expected present discounted value of x(t)
over some period of time. For example,

E
[ ∫ ∞

0
x(t) e−rt dt

]
=

∫ ∞

0
x0 e−(r−α)t dt = x0/(r − α) .

(6)
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Mathematical Background (continued)

Fig. 3 shows three sample paths of eq. (5), with α = .09 and
σ = .2. (These numbers approximately equal annual expected
growth rate and S.D. of the NYSE Index in real terms.) Sample
paths were generated by taking a ∆t of one month, and using

xt = 1.0075 xt−1 + .0577 xt−1 εt , (7)

with x1950 = 100. Also shown is the trend line.

Note that in one of these sample paths the “stock market”
outperformed its expected rate of growth, but in the other two it
underperformed.
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Sample Paths of Geometric Brownian Motion
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Mathematical Background (continued)

Figure 4 shows a forecast of this process. The forecasted value
of x is given by

x̂1974+T = (1.0075)T x1974 ,

where T is in months. Also shown is a 66-percent confidence
interval. Since the S.D. of percentage changes in x grows with
the square root of the time horizon, bounds of this confidence
interval are

(1.0075)T (1.0577)
√

T x1974 and (1.0075)T (1.0577)−
√

T x1974 .
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Forecast of Geometric Brownian Motion
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Mathematical Background (continued)

Mean-Reverting Processes: Simplest is

dx = η (x̄ − x) dt + σ dz . (8)

Here, η is speed of reversion, and x̄ is “normal” level of x .

If x = x0, its expected value at future time t is

E [xt ] = x̄ + (x0 − x̄) e−ηt . (9)

Also, the variance of (xt − x̄) is

V [xt − x̄ ] =
σ2

2η
(1− e−2ηt). (10)

Note that E [xt ] → x̄ as t becomes large, and variance
→ σ2/2η. Also, as η → ∞, V [xt ] → 0, so x can never deviate
from x̄ . As η → 0, x becomes a simple Brownian motion, and
V [xt ] → σ2 t.
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Mathematical Background (continued)

Fig. 5 shows four sample paths of equation (8) for different
values of η. In each case, σ = .05 in monthly terms, x̄ = 1, and
x(t) begins at x0 = 1.

Fig. 6 shows an optimal forecast for η = .02, along with a
66-percent confidence interval. Note that after four or five years,
the variance of the forecast converges to
σ2/2η = .0025/.04 = .065, so the 66 percent confidence
interval (± 1 S.D.) converges to the forecast ±.25.
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Sample Paths of Mean-Reverting Process

dx = η (x̄ − x) dt + σ dz
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Optimal Forecast of Mean-Reverting Process
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Mathematical Background (continued)

Can generalize eq. (8). For example, one might expect x(t) to
revert to x̄ but the variance rate to grow with x . Then one could
use

dx = η (x̄ − x) dt + σ x dz . (11)

Or, proportional changes in a variable might be modelled as
mean- reverting:

dx = η x (x̄ − x) dt + σ x dz . (12)
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Mathematical Background (continued)

Ito’s Lemma: Suppose x(t) is an Ito process, i.e.,

dx = a(x , t)dt + b(x , t)dz , (13)

How do we take derivatives of F (x , t)?
Usual rule of calculus:

dF =
∂F

∂x
dx +

∂F

∂t
dt.

But suppose we include higher order terms:

dF =
∂F

∂x
dx +

∂F

∂t
dt + 1

2

∂2F

∂x2
(dx)2 + 1

6

∂3F

∂x3
(dx)3 + ... (14)
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Mathematical Background (continued)

In ordinary calculus, these higher order terms all vanish in the limit.
Is that the case here? First, substitute eq. (13) for dx to determine
(dx)2:

(dx)2 = a2(x , t) (dt)2 + 2 a(x , t) b(x , t) (dt)3/2 + b2(x , t) dt.

Terms in (dt)3/2 and (dt)2 go to zero faster than dt as it becomes
infinitesimally small, so we can ignore these terms and write

(dx)2 = b2(x , t) dt.

Every term in the expansion of (dx)3 will include dt to a power
greater than 1, and so will go to zero faster than dt in the limit.
Likewise for (dx)4, etc. Hence the differential dF is

dF =
∂F

∂t
dt +

∂F

∂x
dx + 1

2

∂2F

∂x2
(dx)2. (15)
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Mathematical Background (continued)

Can write this in expanded form by substituting eq.(13) for dx :

dF =
[

∂F

∂t
+ a(x , t)

∂F

∂x
+ 1

2 b2(x , t)
∂2F

∂x2

]
dt

+ b(x , t)
∂F

∂x
dz . (16)

Example: Geometric Brownian Motion. Let’s return to the GBM
of eq. (5). Use Ito’s Lemma to find the process given by
F (x) = log x .

Since ∂F /∂t = 0, ∂F /∂x = 1/x , and ∂2F /∂x2 = −1/x2, we
have from (15):

dF =
1

x
dx − 1

2 x2
(dx)2

= α dt + σ dz − 1
2 σ2 dt = (α− 1

2 σ2) dt + σ dz (17)
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Mathematical Background (continued)

Hence over any interval T , the change in log x is normally
distributed with mean (α− 1

2 σ2) T and variance σ2 T .

Why is the drift rate of F (x) = log x less than α? Because
log x is a concave function of x , so with x uncertain, expected
value of log x changes by less than the log of the expected value
of x . Uncertainty over x is greater the longer the time horizon,
so the expected value of log x is reduced by an amount that
increases with time; hence drift rate is reduced.
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Investment Problem

Invest I , get V , with V a GBM, i.e.,

dV = αVdt + σVdz (18)

Payout rate is δ and expected rate of return is µ, so α = µ− δ.

Want value of the investment opportunity (i.e., the option to
invest), F (V ), and decision rule V ∗.
Solution by Dynamic Programming: F (V ) must satisfy Bellman
equation:

ρ F dt = E(dF ) . (19)

This just says that over interval dt, total expected return on the
investment opportunity, ρ F dt, is equal to expected rate of
capital appreciation.
Expand dF using Ito’s Lemma:

dF = F ′(V ) dV + 1
2 F ′′(V ) (dV )2 .
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Investment Problem (continued)

Substituting eq. (18) for dV and noting that E(dz) = 0 gives

E [dF ] = α V F ′(V ) dt + 1
2 σ2 V 2 F ′′(V ) dt .

Hence the Bellman equation becomes (after dividing through by dt):

1
2 σ2 V 2 F ′′(V ) + α V F ′(V )− ρ F = 0 . (20)

Also, F (V ) must satisfy boundary conditions:

F (0) = 0 (21)

F (V ∗) = V ∗ − I (22)

F ′(V ∗) = 1 (23)

This is easy to solve, but first, let’s do this again using option pricing
approach. Then we avoid problem of choosing ρ and α.
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Investment Problem (continued)

Solution by Contingent Claims Analysis.
Create a risk-free portfolio: Hold option to invest, worth F (V ).
Short n = dF /dV units of project.

Value of portfolio = Φ = F − F ′(V )V

Short position requires payment of δVF ′(V ) dollars per period.
So total return on portfolio is:

dF − F ′(V )dV − δVF ′(V )dt

Since dF = F ′(V )dV + 1
2F ′′(V )(dV )2, total return is:

1
2F ′′(V )(dV )2 − δVF ′(V )dt

(dV )2 = σ2V 2dt, so total return becomes:

1
2σ2V 2F ′′(V )dt − δVF ′(V )dt
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Investment Problem (continued)

This return is risk-free. Hence to avoid arbitrage, it must equal
rΦdt = r [F − F ′(V )V ]dt:

1
2σ2V 2F ′′(V )dt − δVF ′(V )dt = r [F − F ′(V )V ]dt

This yields the following differential equation that F (V ) must
satisfy:

1
2σ2V 2F ′′(V ) + (r − δ)VF ′(V )− rF = 0

Boundary conditions:
F (0) = 0 (24)

F (V ∗) = V ∗ − I (25)

F ′(V ∗) = 1 (26)
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Investment Problem (continued)

Solution. You can check (by substitution) that

F (V ) = AV β, for V ≤ V ∗

= V − I , for V > V ∗

where β = 1
2 −

r − δ

σ2
+

√(
r − δ

σ2
− 1

2

)2

+
2r

σ2
,

V ∗ =
βI

β− 1
, A =

V ∗ − I

(V ∗)β

Solution is shown in figure.
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Graph of F (V )
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Characteristics of Solution

Higher σ: Makes F larger, and also makes V ∗ larger. Now the
firm’s options to invest (patents, land, etc.) are worth more, but
the firm should do less investing. Opportunity cost of investing
is higher.

Higher δ: Higher cash payout rate increases opportunity cost of
keeping the option alive. Makes F smaller, V ∗ smaller. Now the
firm’s options to invest are worth less, but the firm should do
more investing.

Higher r : Makes F larger and V ∗ larger. Option value increases
because present value of exercise price I decreases (in event of
exercise). This increases opportunity cost of “killing” the option,
so V ∗ rises.
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Characteristics of Solution (continued)

Higher I : Makes F smaller and V ∗ larger. Note that as I → 0,
F → V , and V ∗ → 0.

Question: Suppose σ increases. We know this makes V ∗ larger.
What happens to E(T ∗), the expected time until V reaches V ∗

and investment occurs?

The following two figures illustrate how F (V ) and V ∗ vary with
σ and δ.
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Value of Investment Opportunity
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Critical Value V ∗ as a Function of σ
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How Important is Option Value?

Take a factory which costs $1 million (= I ) to build. Suppose
riskless rate is 7% (nominal). Critical value V ∗ is shown below
for different values of σ and δ.

Payout Rate δ
2% 5% 10% 15%

Annual 10% 3.84 1.65 1.13 1.06
Standard Deviation 20% 4.77 2.15 1.40 1.22

of Project Value (σ) 40% 8.06 3.61 2.18 1.73

For average firm on NYSE, σ = 20%.

Observe that for σ = 20% or 40%, V ∗ is much larger than I . So
how important is option value? Very.
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How Important is Option Value? (continued)

How valuable is option to invest, even if not exercised? Suppose
V = I = $1 million. Option value, F , is shown below.

Payout Rate δ
2% 5% 10% 15%

Annual 10% .46 .18 .05 .02
Standard Deviation 20% .52 .27 .12 .07

of Project Value (σ) 40% .65 .44 .28 .20
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Mean-Reverting Process

Suppose V follows the mean-reverting process:

dV = η (V̄ − V ) V dt + σ V dz , (27)

To find the optimal investment rule, we will use contingent
claims analysis.

Let µ = risk-adjusted discount rate for project.

Expected rate of growth of V is not constant, but a function of
V . Hence the “shortfall,” δ = µ− (1/dt)E(dV )/V , is a
function of V :

δ(V ) = µ− η (V̄ − V ) . (28)

The differential equation for F (V ) is now

1
2 σ2 V 2 F ′′(V ) + [r − µ + η (V̄ − V )] V F ′(V )− r F = 0 .

(29)
Also, F (V ) must satisfy the same boundary conditions (21) –
(23) as before, and for the same reasons.
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Mean-Reverting Process (continued)

Solution is a little more complicated. Define a new function
h(V ) by

F (V ) = A V θ h(V ) , (30)

Substituting this into eq. (29) and rearranging gives the
following equation:

V θ h(V )
[

1
2 σ2 θ(θ − 1) + (r − µ + η V̄ ) θ − r

]
+ V θ+1

[
1
2 σ2 V h′′(V ) + (σ2θ + r − µ + η V̄ − η V ) h′(V )

− η θ h(V )] = 0 . (31)
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Mean-Reverting Process (continued)

Eq. (31) must hold for any value of V , so the bracketed terms
in both the first and second lines must equal zero. First choose
θ to set the bracketed terms in the first line equal to zero:

1
2 σ2 θ(θ − 1) + (r − µ + η V̄ ) θ − r = 0 .

To satisfy the boundary condition that F (0) = 0, we use the
positive solution:

θ = 1
2 +(µ− r − ηV̄ )/σ2 +

√[
(r − µ + ηV̄ )/σ2 − 1

2

]2 + 2r/σ2 .
(32)

From the second line of eq. (31),

1
2 σ2 V h′′(V )+ (σ2 θ + r −µ + η V̄ − η V ) h′(V )− η θ h(V ) = 0 .

(33)

Robert Pindyck (MIT) LECTURES ON REAL OPTIONS—PART II August, 2008 44 / 50



Mean-Reverting Process (continued)

Make the substitution x = 2ηV /σ2, to transform eq.(33) into a
standard form. Let h(V ) = g(x), so that h′(V ) = (2η/σ2) g ′(x)
and h′′(V ) = (2η/σ2)2 g ′′(x). Then (33) becomes

x g ′′(x) + (b− x) g ′(x)− θ g(x) = 0 , (34)

where
b = 2θ + 2 (r − µ + ηV̄ )/σ2 .

Eq. (34) is Kummer’s Equation. Its solution is the confluent
hypergeometric function H(x ; θ, b(θ)), which has the following
series representation:

H(x ; θ, b) = 1+
θ

b
x +

θ(θ + 1)
b(b + 1)

x2

2!
+

θ(θ + 1)(θ + 2)
b(b + 1)(b + 2)

x3

3!
+ . . . .

(35)
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Mean-Reverting Process (continued)

We have verified that the solution to equation (29) is indeed of
the form of equation (30). Solution is

F (V ) = A V θ H(
2η

σ2
V ; θ, b) , (36)

where A is a constant yet to be determined.

We can find A, as well as the critical value V ∗, from the
remaining two boundary conditions, that is, F (V ∗) = V ∗ − I
and FV (V ∗) = 1. Because the confluent hypergeometric
function is an infinite series, A and V ∗ must be found
numerically.

Look at several numerical solutions. Set I = 1, r = .04,
µ = .08, and σ = .2. We will vary η and V̄ .
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Mean Reversion— F (V ) for η = 0.05 and

V̄ = 0.5, 1.0, and 1.5
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Mean Reversion— F (V ) for η = 0.1 and

V̄ = 0.5, 1.0, and 1.5
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Mean Reversion— F (V ) for η = 0.5 and

V̄ = 0.5, 1.0, and 1.5
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Crtical Value V ∗ as a Function of η for µ = 0.08

and V̄ = 0.1, 1.0, and 1.5
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